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Overview

 Motivation
 Background to Prediction
 Dynamic Spectrum Sharing

 Without and with prediction
 Spectrum occupancy prediction

 Bayesian prediction 
 LSTM based prediction
 Rapid learning
 Prediction performance

 Concluding remarks
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Motivation
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Motivation

Inadequate spectrum 
management policies

Spectrum scarcity, wastage

Opportunistic usage through 
Dynamic Spectrum Access (DSA) 
and Cognitive Radios

Performs cognitive functions for 
opportunistic access
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Prediction or Predictive Analysis

 Learn, from what we know from 
the past

 Training over a dimension of of 
some process ஽ , 
where n denotes the current time 
step

 Set/tune yourself to generate a 
likely value for the same process 
for the future ஽

 Prediction, and forecasting the 
future
 Generate ஽
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Prediction: Some key aspects

 Performance, of prediction (the predictor) is mostly measured in terms of

 Prediction error, can be defined as the expected value of an error function 
for the difference between the predicted value and the actual value, 

஽
஽ ஽

 Capability, of a predictor is defined with respect to;

 The prediction error ஽

 Complexity (computational) and the time to learn/train and predict

 Data correlation, is crucial to successfully predict

 Higher the correlation better the prediction outcome, that is lower ஽

 Independent events (i.e. no correlation) cannot be predicted

9



Spectrum Prediction over Space-Time
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Dynamic Spectrum Sharing
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Dynamic Spectrum Sharing
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Spectrum Prediction Techniques

 Occupancy Model;

 2-State Markov
 4-State HMM

 Prediction Methods 
(presented here)
 Bayesian prediction
 Cooperative prediction
 LSTM prediction
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Bayesian Spectrum Prediction [1]
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• Use Bayesian principle to predict the next 
state given the observations 



Cooperative Spectrum Prediction [2,3]
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• Use multiple radios to predict the next state of the 
spectrum by fusing individual predictions

Fusion function can be hard or soft



Spectrum Prediction with LSTM [4,5]
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• Fast training with LSTM

– Using statistically modelled training parameters

– Uses model parameters to set the training 
parameters

• Prediction Error

– Theoretically characterising the error performance



LSTM Learning: Statistical modelling [4]
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• Proposed initialization strategy

– Modes of the distribution are chosen as alternate initial values.

Histograms of input weight matrix of LSTM layer



LSTM: Fast Learning [4]
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The LSTM based method uses look-up table to match the tuning 
parameters to the input process (Markov input process in this example)



LSTM Prediction Performance [5]

 The pdfs of predicted scores are modelled as a mixture of truncated 
Gaussian distributions ( ் )),

௒ ௧ ௧ ௜௠ ் ௧ ௜௠ ௜௠

ெ

௠ୀଵ

 𝑡 – actual occupancy at time step 

𝑡 – predicted score for class at time step 
– component proportions
– means of the parent Gaussian components
– standard deviation of the parent Gaussian components

– truncation interval 
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LSTM Prediction Performance [5]

 We then derive the error 
probability of LSTM based 
prediction using the 
distributions of the scores

 The simulations and 
theory match very well
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Thank you

22


